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Abstract

We present a multiobjective optimization framework to evaluate the effects of comfort relax-
ation on the energy flexibility of buildings. This work is motivated by recent interest in under-
standing demand elasticity available for real-time electricity market operations and demand re-
sponse events. We analyze the flexibility provided by an economics-based control architecture
that directly minimizes total energy and by a traditional tracking control system that minimizes
deviations from reference temperature and relative humidity set-points. Our study provides the
following insights: (i) using percentage mean vote (PMV) and predicted percentage dissatisfied
(PPD) constraints within an economics-based system consistently gives the most flexibility as com-
fort is relaxed, (ii) using PMV and PPD penalization objectives results in high comfort volatil-
ity, (iii) using temperature and relative humidity bounds severely overestimates flexibility, and
(iv) tracking control offers limited flexibility even if used with optimal set-back conditions. We
present a strategy to approximate nonlinear comfort regions using linear polyhedral regions, and
we demonstrate that this reduces the computational complexity of optimal control formulations.

Keywords: multiobjective optimization, optimal control, HVAC systems, comfort relaxation, en-
ergy flexibility.

1 Introduction

Commercial buildings are valuable assets to power grid operators because they can enable demand
elasticity [19]. Such flexibility is necessary to accommodate intermittent renewable power at a large
scale and to avoid the construction of new generation plants. Demand flexibility can be achieved in
buildings by shifting the demand profile in time and by relaxing comfort conditions to shed demand.
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Assessing the economic benefits that comfort relaxation can bring is nontrivial because system flexi-
bility is a function of many factors such as the building design, real-time weather conditions, control
architecture, and occupant acceptance [21, 20].

The heating, ventilation, and air conditioning (HVAC) system of a building comprises a large
number of equipment units and material and energy resources that are monitored and coordinated
in real time by a building management or control system (BMS). Thermal comfort and air quality
conditions need to be enforced as occupancy levels, ambient conditions, and energy prices change.
Two main control architectures are used in BMS systems. The traditional architecture (still dominat-
ing industry) determines set-points for equipment units such as delivery temperatures and econo-
mizer positions (recycle rates) as well as set-points for internal conditions such as zone temperatures,
relative humidity, and pressure. Such set-points usually are tuned by experienced operators or by
operational rules embedded in the BMS system. The set-points are then tracked by low-level, single-
loop controllers such as thermostats. A key question that arises under this architecture is how to
properly predict the amount of demand that the system will use for a given combination of set-
points. This is particularly difficult because of the complex feedbacks and physical interactions that
exist between equipment units and controllers. Limited knowledge of these interactions introduces a
disconnect between global economic performance (e.g., total energy demand) and low-level control
performance (e.g., set-point tracking) and can result in severe inefficiencies. This disconnect has been
widely studied in the chemical industry [27, 25, 6].

Because of the inefficiencies of traditional control architectures, the building automation indus-
try has recently shifted its interest to model-based management systems (also known as predictive
control systems) [11, 5, 18, 22, 33]. These supervisory control architectures use dynamic models to
predict the interactions between global HVAC variables and local zone conditions. In addition, they
can directly optimize economic objective functions of different forms [7]. Consequently, these sys-
tems are also referred to as economics-based control systems [17]. All these features allow these
advanced systems to predict and trade off energy (or cost) and comfort by manipulating multiple
building variables simultaneously.

The vast majority of the building industry use neither comfort models nor occupant feedback
routinely in operations. Consequently and, contrary to what is normally believed, most buildings
operate under poor comfort conditions [14]. In addition, and to the best of our knowledge, only
limited insights are available in the literature on the energy flexibility provided by different control
systems as comfort conditions are relaxed. One can find many control formulations reported for
which economic and energy savings potentials are evaluated. We refer the reader to the studies
reported in [36, 7, 15, 30, 11, 5, 18, 22, 33, 31] and the comprehensive review [10]. None of these
studies evaluates energy flexibility and control system behavior under relaxed comfort conditions.

The poor comfort performance of legacy control architectures results in resistance by occupants
and building owners to consider emerging automation technologies. In addition, the limited under-
standing about the trade-offs between economic performance and comfort makes it difficult to fully
appreciate the economic value of new technologies over prevailing ones and thus can makes it dif-
ficult to commercialize them. We believe that performing more studies to evaluate these trade-offs
is necessary to accelerate the deployment of new technologies. This, in turn, is essential to enabling
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demand response and demand elasticity at a large scale [20, 35].

Several multiobjective optimization studies for buildings are available in the literature. In [24, 16]
control studies are presented on the competing effects of air quality and energy consumption to
demonstrate that significant energy reductions on energy use are possible with small relaxations of
air quality conditions. In [9] the authors analyze the benefits of using multi-objective optimization
in energy retrofit tasks. None of these works analyze trade-offs between energy use and thermal
comfort.

In this work, we present a multiobjective optimization framework to evaluate the impact of com-
fort relaxation on the energy flexibility of different control systems. We compare the flexibility of
different economics-based and traditional control architectures reported in the literature and used in
practice. To perform our studies, we use a physical model of a single-zone building conditioned by an
air-handling unit (AHU), and we incorporate a detailed PMV/PPD thermal comfort model. We em-
phasize that the intent of the multiobjective framework presented is not to obtain absolute numbers
on the impact of comfort relaxation on demand flexibility. Such a study would require the considera-
tion of many factors such as climate, building and HVAC design, and operational conditions. Instead,
the intent of our study is to provide insights into the type of biased comfort perceptions and system
volatility that can arise if inefficient control architectures and inappropriate comfort metrics are used
in the control formulation. In addition, we seek to highlight the advantages that a multiobjective
setting provides for analyzing and quantifying the benefits of economics-based control technologies.

The paper is structured as follows. In Section 2 we describe the dynamic model of the HVAC
system and the thermal comfort model used in the optimal control formulations. In Section 3 we
present the multiobjective framework used to analyze the behavior of different control formulations
and comfort relaxation strategies. A numerical study is presented in Section 4, and computational
issues are discussed in Section 5. Conclusions and future work are discussed in Section 6.

2 Dynamic Model of HVAC System

The building model considered in this work was presented in [28]. We use the thermal comfort
model described in the ASHRAE standard 55-2004 [1]. The building model seeks to capture the effect
of different global control variables on energy demand and local zone conditions. In particular, the
model captures the dynamics of the zone CO2 concentration, humidity, pressure, and temperature as
well as the behavior of the AHU and the recycle temperatures, flows, and concentrations. We only
describe the main variables of interest in the narrative. The full model notation and parameters are
presented in Appendix A.

2.1 Material Balances

The total mass balance in the building zone is given by

dm(τ)

dτ
= ρ · (qin(τ)− qout(τ)) (2.1)
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where τ denotes time and qin(·), qout(·) are inlet and outlet zone flows, respectively. The individual
component dynamic mass balances are described by

V · dCi(τ)

dτ
= qin(τ) · Cini (τ)− qout(τ) · Ci(τ) + n(τ) · ntot ·Gi, i ε {CO2, H2O}. (2.2)

The occupancy signal of the space is given by n(τ), which takes a value of 1 if the space is occupied
and a value of zero if it is unoccupied at a given time τ . The total number of occupants during
occupied times is ntot.

If we assume air with constant density and heat capacity the mass balance in the recycle is

qout(τ) + qamb(τ) = qex(τ) + qm(τ) (2.3a)

Ci(τ) · qout(τ) + Cambi (τ) · qamb(τ) = Ci(τ) · qex(τ) + Cmi (τ) · qm(τ), i ε {CO2, H2O}. (2.3b)

The mass balances in the AHU are given by,

qin(τ) = qm(τ) (2.4a)

mrm
i (τ) = qin(τ) · Cini − qm(τ) · Cmi (τ). (2.4b)

The mass removal rates in the AHU are denoted as mrm
i . We consider mrm

CO2
= 0 because this compo-

nent is not removed in the AHU (only moisture is removed or added). The relationship between the
zone pressure, mass, and temperature is given by the ideal gas law,

P (τ) =
m(τ) ·R · T (τ)

M · V
. (2.5)

The zone relative humidity is given by

RH(τ) = 100 · CH2O(τ)

CsatH2O
(τ)

, (2.6)

where CsatH2O
(τ) is the saturation density (concentration) and is computed from Antoine’s equation

[3],

log10(C
sat
H2O(τ)) = 8.07131− 1730.63

T (τ)− 39.73
. (2.7)

The concentration of CO2 in parts per million (ppm) is computed from

ppmVCO2(τ) = 1000 · CCO2(τ) ·R · T (τ)

MCO2 · P (τ)
. (2.8)

We note that interactions exist between different physical variables that are neither captured nor
exploited by standard control architectures. For instance, relative humidity is affected by the sat-
uration density, and this in turn is affected by the zone temperature. In addition, the CO2 ppmV
concentration is affected by the zone pressure and temperature. In [28] we noted that exploiting
these variable interactions can give a control system high flexibility to minimize energy and satisfy
air quality and comfort conditions. For instance, one can decrease the relative humidity by increas-
ing the saturation density, not just by removing moisture in the AHU. In addition, one can decrease
CO2 concentration by increasing pressure because this implicitly increases the total mass of air in the
zone. Standard architectures use single-loop controllers that cannot capture these global interactions.
Instead, relative humidity and pressure conditions are usually kept fixed.
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2.2 Energy Balances

The dynamic energy balance of the zone is given by

m(τ)

ρ
· dT (τ)

dτ
= qin(τ) · T in(τ)− qout(τ) · T (τ)− Uw ·Aw

ρ · cp
· (T (τ)− T amb(τ)) +

n(τ) · noc ·Qoc

ρ · cp
.

(2.9)

Here, T (·) is the zone temperature, T in(·) is the air supply temperature, and T amb(·) is the ambient
temperature. We consider only heat gains generated from the occupants. The energy balance in the
recycle is

qout(τ) · T (τ) + qamb(τ) · Tamb(τ) = qex(τ) · T (τ) + qin(τ) · Tm(τ). (2.10)

Here, Tm(·) is the mixed stream temperature entering the AHU. Symbols qamb(·), qex(·), and qin(·)
denote the ambient flow, exhaust flow, and delivery flow, respectively. The amount of moisture
added/removed in the AHUmrm

H2O
(·) is assumed to be proportional to the latent energy added/removed

Qlat(·). This is modeled as

Qlat(τ) = hlat ·mrm
H2O(τ). (2.11)

The amount of sensible energy added/removed in the AHU is given by

Qsens(τ) = qin(τ) · ρ · cp · (T in(τ)− Tm(τ)). (2.12)

The total energy consumed by the HVAC system is computed from

Qhvac(τ) = |Qlat(τ)|+ |Qsens(τ)|, (2.13)

where |·| is the absolute value function. We do not consider energy consumed by fans. We reformulate
equation (2.13) in differentiable form by using the following auxiliary equations:

Qhvac(τ) = (Qlat+ (τ) +Qlat− (τ)) + (Qsens+ (τ) +Qsens− (τ)) (2.14a)

Qsens(τ) = Qsens+ (τ)−Qsens− (τ) (2.14b)

Qlat(τ) = Qlat+ (τ)−Qlat− (τ). (2.14c)

Here, Qlat+ (τ), Qlat− (τ), Qsens+ (τ), Qsens− (τ) ≥ 0 are auxiliary variables.

2.3 Thermal Comfort Model

Thermal comfort is the result of the heat exchange between the body and the environment, and it
is influenced by four main variables (air temperature, radiant temperature, relative humidity, air
speed) and two personal parameters (clothing and activity level or metabolic rate) [4, 1]. The comfort
index used in the ASHRAE 55-2004 and the ISO 7730 standards [1, 13] is the predicted mean vote
(PMV), originally proposed by Fanger [23]. We use the comfort model reported in Appendix D of the
ASHRAE 55-2004 standard [1]. We have slightly adjusted its notation in order to enhance readability.
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The PMV index reflects the thermal sensation during stationary conditions (approximately a set-
tling time of an hour is assumed). The PMV is measured on a scale of seven values defined as follows:
+3 hot, +2 warm, +1 slightly warm, 0 neutral, -1 slightly cool, -2 cool, -3 cold. A human is in a state of
thermal equilibrium when the amount of heat produced and gained by the body is equal to amount
of heat lost by the body. Fanger’s model assumes that maximum comfort is achieved when such an
equilibrium is reached. In the PMV scale, this corresponds to a value of zero. Acceptable comfort
conditions are typically assumed to be in the PMV range [−0.5,+0.5].

The PMV index can be calculated from the following heat balance relationship:

PMV (τ) = (0.303 · exp(−0.036 ·Mm) + 0.028) · L(τ). (2.15)

Here, L(τ) is the thermal load of the body and represents the difference between the body production
and the loss of heat. L(τ) is calculated from the following contributions [1]:

L(τ) = (Mm −Mw)− L1(τ)− L2(τ)− L3(τ)− L4(τ)− L5(τ)− L6(τ) (2.16a)

L1(τ) = 3.05× 103 · (5733− 6.99 · (Mm −Mw)− PH2O(τ)) (2.16b)

L2(τ) = 0.42 · (Mm −Mw − 58.15) (2.16c)

L3(τ) = 1.7× 10−5 ·Mm · (5867.0− PH2O(τ)) (2.16d)

L4(τ) = 1.4× 10−3 ·Mm · (307.15− T (τ)) (2.16e)

L5(τ) = 3.96× 10−8 · fcl ·
(
T cl(τ)4 − T (τ)4

)
(2.16f)

L6(τ) = fcl · hc · (T cl(τ)− T (τ)). (2.16g)

The different contributions to L(τ) (in order of appearance) correspond to net body heat production,
heat losses through the skin, heat losses from sweating, latent heat losses from respiration, heat losses
from dry respiration, heat losses from radiation, and heat losses by convection. Symbol PH2O(τ)

denotes the water partial pressure in the air, T cl(τ) is the clothing surface temperature, hc is the
convection heat transfer coefficient (a function of the relative air speed), Icl is the clothing thermal
insulation, fcl is the clothing area factor, Mm is the metabolic heat gain, and Mw is the body external
work. For simplicity in the presentation, we assume the mean radiant temperature to be equal to the
zone temperature, and we assume a constant relative air speed.

The water partial pressure in the air PH2O(τ) (in Pascals) can be calculated from the saturation
density CsatH2O

(τ) (in gr/m3 or mmHg) and the relative humidity RH(τ) from [26, 2]:

PH2O(τ) =
133

100
·RH(τ) · CsatH2O(τ). (2.17)

The surface temperature of the clothing T cl(·) is obtained from the implicit algebraic equation

0 = a4(τ) + a3(τ) · hc − a2 · T cl(τ)4 − T cl(τ) · (1 + a1 · hc), (2.18)
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where

a1 = Icl · fcl (2.19a)

a2 = 3.96× 10−8 · a1 (2.19b)

a3(τ) = a1 · T (τ) (2.19c)

a4(τ) = 308.7− 0.028 · (Mm −Mw) + a2 · T (τ)4. (2.19d)

The predicted percentage dissatisfied (PPD) is an index closely related to PMV. This represents the
percentage of people that are expected not to be comfortable in a given thermal environment. This
index is calculated by the following correlation:

PPD(τ) = 100− 95 · exp
(
−0.033 · PMV (τ)4 − 0.218 · PMV (τ)2

)
(2.20)

The relationship between PPD and PMV is illustrated in Figure 1. Here, we highlight the points for
PMV in the regions [−0.5,+0.5] and [−1,+1] and the corresponding PPD values, which are approx-
imately 10% and 25%, respectively. According to this comfort model, the minimum possible value
for PPD is 5%, which occurs at a PMV value of zero. In Figure 2 we visualize the comfort zone in a
psychometric chart for values of PMV in the domain [−0.5,+0.5] and [−1,+1].
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Figure 1: Relationship between PPD and PMV. The vertical lines indicate the −0.5 ≤ PMV ≤ +0.5

and −1 ≤ PMV ≤ +1 comfort regions. The horizontal lines indicate the corresponding PPD values,
which are 10% and 25%, respectively, and the point of maximum comfort at 5%.

We note that Fanger’s comfort model involves complex nonlinear equations that add significant
difficulty when solved in conjunction with the material and energy balance equations. In Section 5
we present a strategy to approximate the comfort region predicted by Fanger’s model using linear
constraints and this ameliorates complexity.
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Figure 2: Comfort zone visualization in a psychometric chart. The light gray area corresponds to the
−0.5 ≤ PMV ≤ +0.5 comfort region, and the dark gray area corresponds to the −1 ≤ PMV ≤ +1

region. Level curves are of constant relative humidity.

3 Multiobjective Control Formulation

Central to our study is the following multiobjective optimal control formulation,

min
u(·)

{Φe(x(·), y(·), u(·)) , Φc(x(·), y(·), u(·))} (3.21a)

s.t. (3.21b)
dx

dτ
= fx(x(τ), y(τ), u(τ), d(τ)), τ ∈ [0, T ] (3.21c)

0 = fy(x(τ), y(τ), u(τ), d(τ)), τ ∈ [0, T ] (3.21d)

0 ≤ h(x(τ), y(τ), u(τ), d(τ)), τ ∈ [0, T ] (3.21e)

x(0) = given. (3.21f)

Here, x(τ) are the dynamic state trajectories (temperature T (·), species concentrations Ci(τ), and air
mass m(τ)); y(τ) are the algebraic state trajectories (relative humidity RH(·), PMV (·), PPD(·)); u(τ)

are the control trajectories (sensitive heat loadQsens(·), latent heat loadQlat(·), ambient flow qamb, and
exhaust flow qex(·)); and d(τ) are the system disturbance trajectories (ambient temperature T amb(·),
ambient concentrations Cambi (·), and occupancy signal n(·)). The differential equations (3.21c) are
the dynamic balances, while the algebraic equations (3.21d) comprise the rest of the model equations
(balances and comfort equations). The inequality constraints (3.21e) denote bounds on air quality
and flows. Comfort bounds are imposed on this control formulation separately.

Symbol Φe(·), represents an economic objective function, while Φc(·) represents a comfort objec-
tive. When these objectives are conflicting, we cannot simultaneously minimize them. Instead, the
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optimal control solution is expressed in terms of the so-called Pareto front, which represents a set of
solutions obtained by minimizing one objective by relaxing (or sacrificing) the other one. The Pareto
front can be computed by using the so-called ε-constrained method. In this method, one of the objec-
tives is moved into the constraints and is relaxed by a factor ε, which is a fixed parameter. This gives
the following problem:

min Φe(·) (3.22a)

s.t. (3.21c)− (3.21e) (3.22b)

Φc(·) ≤ ε. (3.22c)

Here, we use the simplified notation Φe(·) = Φe(x(·), y(·), u(·)) and Φc(·) = Φc(x(·), y(·), u(·)). The
relaxation factor ε is varied in the range [εL, εU ], where εU is obtained by solving the optimal control
problem to minimize Φe(·) and completely ignoring Φc(·). The lower value εL is obtained by solving
the optimal control by minimizing Φc(·) and completely ignoring Φe(·). The solution of problem
(3.22) for a given relaxation factor ε gives a point along the Pareto front.

Any solution along the Pareto front also has a weight ω ∈ [0, 1] corresponding to the solution of
the weighted-objective problem,

min (1− ω) · Φe(·) + ω · Φc(·) (3.23a)

s.t. (3.21c)− (3.21e). (3.23b)

The Pareto front can also be constructed by varying the weight ω on the range [0, 1]. When ω = 0, the
system minimizes the economic objective and comfort is ignored. When ω = 1, the comfort objective
is minimized, and economics are ignored. In other words, ω is the penalization weight of the comfort
metric.

The economic objective function Φe(·) used here is the accumulated HVAC energy demand over
the time horizon [0, N ],

Φe(·) =

∫ N

0
Qhvac(τ)dτ. (3.24)

We use different metrics to define the comfort objective function Φc(·). The first metric is the time-
average PMV,

ΦPMV,avg
c (·) =

1

N

∫ T

0
PMV (τ)2dτ. (3.25)

PMV has been squared because this metric can take negative and positive values and maximum
comfort is obtained at PMV=0. This comfort penalization strategy has been used in [36, 8] using the
weighted formulation (3.23). If the time-average PMV is the metric of comfort choice, we construct
the Pareto front by solving problem (3.22) with relaxed Φc(·). Because of the connection with the
weighted objective strategy, this strategy is equivalent to minimizing the energy Φe(·) while penaliz-
ing the time-average deviations from the point of maximum comfort (PMV=0). Because of this, we
will refer to this strategy as PMV penalization.
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Another way to enforce comfort is to impose constraints on PMV at each point in time τ ∈ [0, T ].
We can thus construct a Pareto front by progressively relaxing the PMV bounds. We do so by solving
the following problem:

min Φe(·) (3.26a)

s.t. (3.21c)− (3.21e) (3.26b)

− ε ≤ PMV (τ) ≤ ε, t ∈ [0, N ]. (3.26c)

Here, ε is varied in the PMV range [−5,+5]. We refer to this strategy as the PMV constrained strategy.
This strategy has been used in [36, 12]. Problem (3.26) imposes the PMV bounds at each point in
time, while (3.25) penalizes the time average. In other words, the PMV penalization strategy allows
PMV bounds to be violated at certain times as long as the average remains bounded. Because of this,
the PMV objective strategy is a relaxation of the PMV constrained strategy and will underestimate the
energy demand. We demonstrate this in Section 5. One can show that the PMV constrained strategy
is equivalent to constructing the Pareto front by solving problem (3.22) using the worst-case comfort
metric,

ΦPMV,max
c (·) = max

t∈[0,N ]
|PMV (τ)|. (3.27)

The reason is that the minimum value of this metric is the minimum value of the problem

min
ε

ε s.t. − ε ≤ PMV (τ) ≤ ε, t ∈ [0, N ]. (3.28)

The worst-case PMV metric is nonsmooth, so it is not amenable for use in the weighted-objective
formulation (3.23). The worst-case metric is discussed only in order to achieve consistency between
the different concepts presented here.

We will also study the time-average PPD comfort metric,

Φc(·) =
1

N

∫ T

0
PPD(τ)dτ. (3.29)

The PPD metric can take only positive values, so we can directly minimize its value. We construct the
Pareto front by solving (3.22) and relaxing the time-average PPD metric (3.29). We refer to this strat-
egy as the PPD penalization strategy. The commercial BuildingIQ system [33] follows this approach
by using the weighted formulation (3.23). A practical advantage of the PMV and PPD penalization
strategies is that they can lead to enhanced numerical robustness. In addition, they can be easily
implemented by using black-box building and thermal comfort models. PPD is often preferred over
PMV because it is easier to interpret. In Section 4 we show, however, that PPD induces more aggres-
sive behavior.

We can also enable comfort relaxation by imposing bounds on PPD at each point in time and by
progressively relaxing them. We do so by solving the following problem:

min Φe(·) (3.30a)

s.t. (3.21c)− (3.21e) (3.30b)

PPD(τ) ≤ ε, t ∈ [0, N ]. (3.30c)
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Here, ε is changed in the PPD range [5, 100] where the lower bound is the minimum possible value
for this metric obtained at a PMV value of zero. We refer to this strategy as the PPD constrained
strategy. Problem (3.30) imposes the PPD bounds at each point in time, while (3.29) penalizes the
time average. Consequently, (3.30) is a relaxation of (3.29) and will tend to underestimate the energy
demand. The PPD constrained strategy is equivalent to constructing the Pareto front by relaxing the
following worst-case PPD metric:

ΦPPD,max
c (·) = max

t∈[0,N ]
|PPD(τ)|. (3.31)

The third comfort metric explored here is the deviation from a given set-point. This is given by

Φc(·) =
1

N

∫ N

0
(T (τ)− T c)2 + (RH(τ)−RHc)2dτ. (3.32)

Here, T c and RHc are temperature and relative humidity set-points, respectively. This comfort met-
ric will be key in exploring the performance of different control strategies widely used in industry
and academic studies. This metric was used to evaluate the impact of comfort relaxation on energy
demand in [28, 34].

The first strategy consists of a set-point tracking control architecture that minimizes (3.32) in or-
der to move as fast as possible to a given set-point. Typically, this set-point is set to a point of max-
imum comfort (PMV=0). This typically occurs around a temperature of 22 oC and a relative humid-
ity of 50%. Consequently, solving problem (3.22) by relaxing this metric is equivalent to allowing
the set-point tracking controller to deviate from the point of maximum comfort. This strategy was
considered in [36] where the authors designed a predictive controller that penalizes deviations in
temperature and relative humidity from a point of maximum comfort. We refer to this strategy as
the maximum comfort tracking strategy. This strategy is used in practice because it avoids the need of
incorporating the nonlinear thermal comfort model in the optimal control formulation, thus avoiding
its computational complexity. In addition, this strategy mimics the performance of typical PID con-
trol loops that are tuned to closely track set-points. Relaxing the comfort objective (3.32) can be seen
as a detuning of the tracking controllers that allows them to reach the set-point less aggressively. As
we show in Section 4, this strategy can result in significant distortions on energy demand and high
volatility as comfort is relaxed.

Another strategy typically used in practice is the following. Because a set-point tracking control
architecture is typically in place, the amount of energy consumed can be relaxed by changing the
set-point values T c, RHc to values of relaxed comfort. These set-points are also known as set-back
conditions. For instance, we might think of moving the temperature set-point from 23 oC to 25 oC
to relax the PPD from 5% to 11%. We will refer to this strategy as set-back tracking. This strategy is
widely used in commercial and residential buildings because it is simple and intuitive.

The last strategy considered and used in several studies consists of enforcing comfort by using
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temperature and relative humidity bounds [5, 32, 22]. In this case, the following problem is solved:

min Φe(·) (3.33a)

s.t. (3.21c)− (3.21e) (3.33b)

εLT ≤ T (τ) ≤ εUT (3.33c)

εLRH ≤ RH(τ) ≤ εURH . (3.33d)

Here, εLT , ε
U
T are lower and upper bounds for the zone temperature, and εLRH , ε

U
RH are lower and

upper bounds for relative humidity. This strategy is practical because it avoids the incorporation of
the nonlinear thermal comfort model. Unfortunately, this strategy overestimates the feasible region
imposed by PMV, as we show in Section 5 . This overestimation is depicted in Figure 3 where we
present the feasible PMV region for the range [−0.5, 0.5] (light gray area) and the region imposed
by the tightest upper and lower bounds for temperature and relative humidity (dark gray area).
The overestimation can be significant. The overestimation of the feasible PMV region results in the
underestimation of the energy demand, and this can lead to comfort violations. Because of this, we
refer to this strategy as comfort overrelaxation.

We can construct a Pareto front for this strategy by finding the temperature and relative humidity
bounds corresponding to a given PMV region. Most control studies use this strategy, but they only
use the flexibility of the zone temperature to relax comfort [5, 18, 22, 17, 11, 19]. This implicitly
assumes that the relative humidity is fixed, because it is rarely modeled. In this case, imposing
bounds on temperature is equivalent to imposing bounds on PMV or PPD because one can always
find the appropriate temperature bounds (at a fixed relative humidity) that correspond to the PMV
bounds. Several studies have demonstrated that allowing relaxation of relative humidity can enable
significant energy demand reductions [36, 28]. In Section 5 we use the multiobjective framework to
demonstrate that this is indeed the case. In addition, we show that relaxing relative humidity also
enhances flexibility.

4 Numerical Study

We present a numerical study to explore the energy flexibility of the different control strategies. To
do so, we solve the different multiobjective optimal control formulations using a time horizon of 48
hours. The horizon is discretized in time intervals of one hour. We use real ambient temperature and
relative humidity conditions at a location in the U.S. Midwest during a summer day [28]. The profiles
are presented in Figure 4. We assume an ambient concentration of CO2 of 400 ppmV, and we consider
a building zone with a volume of 1,000 m3 and 500 occupants during occupied hours. We impose an
upper bound on CO2 concentration of 1,000 ppmV. All the simulation models needed to reproduce
the results can be obtained in http://www.mcs.anl.gov/˜vzavala/MultiobjComfort.tgz.

4.1 PMV Constrained vs. PMV Penalization

The Pareto fronts obtained with the PMV constrained and the PMV penalization strategies are pre-
sented in Figure 5. In the graph of the left panel, the vertical axis is the total amount of energy
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Figure 3: Overestimation of the PMV feasible region using temperature and relative humidity
bounds. The light gray area denotes a PMV region in the range [−0.5,+0.5] and the dark gray area
denotes the feasible region described by the tightest temperature and relative humidity bounds.
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Figure 4: Ambient temperature (top), occupancy (middle), and relative humidity profiles (bottom).

consumed over the time horizon Φe(·) while the horizontal axis is the time-average PPD metric
ΦPPD,avg
c (·). We use time-average PPD to visualize the results, instead of the time-average PMV

metric ΦPMV,avg
c (·), because it is easier to make inferences on comfort impact. We observe that the

PMV penalization strategy underestimates the energy demand compared with that of the PMV con-
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Figure 5: Pareto front for PMV constrained and PMV penalization strategies. Visualization using time-
average PPD (left) and maximum PPD (right).

strained strategy. This result illustrates that penalization gives more flexibility to the control system.
Thus, one might be tempted to conclude that it is a more efficient strategy. We now illustrate that this
flexibility comes at the expense of significant volatility in the comfort profiles.

In the right panel of Figure 5 we visualize the Pareto fronts using the maximum PPD metric
(ΦPPD,max

c (·)) in the horizontal axis. The PMV penalization strategy gives inconsistent results. As
comfort is relaxed, energy demand is reduced, as expected; the reduction, however, is nonmonotone.
In addition, the departure of the PMV penalization front from the PMV constrained front indicates that
the penalization strategy consumes more energy for the same level of the worst-case PPD. The gap
can be as large as 300 kWh. Note also that at a value of maximum PPD of around 70%, the maximum
PPD jumps back to a value of around 50%. In other words, almost identical energy demands are
obtained for very different PPD values. After this break point, both fronts converge, which implies
that PPD becomes constant in time (because average and worst-case values are the same). This er-
ratic behavior of the PMV penalization strategy illustrates the difficulties encountered in controlling
comfort profiles as conditions are relaxed (i.e., by penalizing the PMV term less and less). The PMV
constrained strategy, on the other hand, gives a smooth transition between different comfort relaxation
levels.

4.2 PPD Constrained vs. PPD Penalization

We now construct Pareto fronts for the PPD constrained and the PPD penalization strategies. The re-
sults are presented in Figure 6. From the left panel we can see that the PPD penalization strategy
underestimates the amount of energy used. The effects, however, are much more pronounced in this
case compared with PMV penalization. This can be attributed to the additional nonlinearity induced
by the exponential PPD function (2.20). In the right panel of Figure 6 we can see that PPD penaliza-
tion yields extremely high volatility in PPD profiles. At around a maximum PPD value of 20%, the
Pareto front makes a sudden jump to a maximum value of 100%. In other words, while average PPD
can be maintained at reasonable levels, a slight relaxation in average PPD can yield extremely high
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Figure 6: Pareto front for PPD constrained and PPD penalization strategies. Visualization using time-
average PPD (left) and maximum PPD (right).
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Figure 7: Pareto front for PMV constrained and PPD penalization strategies.

discomfort levels at certain times. We thus conclude that while PPD penalization gives more energy
shedding flexibility, this is not a robust strategy to induce comfort relaxation. From this result we also
conclude that PPD penalization yields much worse volatility compared with PMV penalization. The
PPD constrained strategy, on the other hand, exhibits smooth transitions between different comfort
levels.

4.3 PMV Constrained vs. PPD Constrained

In Figure 7 we compare the PMV constrained and the PPD constrained strategies. The Pareto fronts
are nearly identical. The reason is the nature of the PPD function, which imposes symmetry on both
sides of PMV. We thus conclude that both strategies are equally effective at relaxing comfort. This
conclusion is important because it is preferable to impose bounds in the space of PMV in order to
avoid the nonlinear nature of the PPD function (2.20).
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Figure 8: Pareto fronts for economics-based strategy with PMV constraints and for the maximum set-
point tracking strategy.

4.4 Economic-Based vs. Maximum Comfort Tracking

We now compare the energy shedding potential of the PMV constrained strategy (which is an economics-
based control strategy) against that of the maximum comfort tracking strategy. The results are presented
in Figure 8. At maximum comfort (PPD of 5%) the total amount of energy consumed by the PMV
constrained strategy is 1,800 kWh. A relaxation of the maximum PPD value to 10% reduces the energy
level of 1,500 kWh. This is a shedding potential of 300 kWh or 16% in relative terms. A relaxation to
a maximum PPD value of 20% yields a shedding potential of 500 kWh or 27%. At a maximum PPD
value of 30% the potential is 700 kWh or 38%. The tracking strategy consistently uses more energy
than does the economics-based strategy. At the maximum PPD level of 5% the relative difference in
energy demand is of 10% (absolute difference of 200 kWh), while at a PPD level of 20% reaches a
level of 30% (600 kWh). The increasing relative difference indicates that the economic-based strategy
offers much more shedding flexibility as comfort is relaxed. For instance, relaxing the maximum PPD
level for the economics-based strategy from a level of 5% to 25% offers a shedding potential of 600
kWh (1,800 kWh to 1,200 kWh). The tracking strategy offers a shedding potential of 300 kWh (2,000
kWh to 1,700 kWh). This is half of the flexibility of the economics-based strategy. The tracking strat-
egy also exhibits high comfort volatility as conditions are relaxed. This result illustrates that tracking
strategies are difficult to tune to give appropriate comfort relaxation.

4.5 Economic-Based vs. Set-Back Relaxation

We now compare the economic-based PMV constrained strategy against the set-back relaxation strategy.
We fix the relative humidity set-point RHc to a value of 50% and find the temperatures T c at which
PMV values on the range [0,3] are obtained. This correspond to temperature set-points in the range
[26,33]oC. We use positive values of PMV because this is a cooling season. We then use the tempera-
ture set-points to form the Pareto front by minimizing Φtrack

c (·) (3.32). To perform a fair comparison,
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Figure 9: Pareto front for economic-based PMV constrained with fixed relative humidity, economic-based
PMV constrained with free relative humidity, and set-back relaxation strategies.

we also fix the relative humidity to a value of 50% for the economic-based strategy. This fixed rela-
tive humidity strategy has been considered in [36]. To evaluate the additional flexibility that relative
humidity offers, we also compare the performance of the economic-based strategy using free relative
humidity. The results are presented in Figure 9. The set-back relaxation strategy indeed provides en-
ergy flexibility. In addition, its behavior is stable. This flexibility, however, is very limited compared
with that of the economics-based strategy. In particular, the flexibility of the set-back strategy when
relaxing comfort from a maximum PPD value of 5% to a value of 25% is less than 10% (200 kWh).
The flexibility for the economic-based strategy using the same relaxation values is 20% (400 kWh).
We can conclude that a tracking control architecture provides limited flexibility even if set-points are
fully relaxed. The reason is that a tracking controller will always try to stay close to the set-point
given and this will come at the expense of increased energy demand and limited flexibility.

By comparing the Pareto front for the economic-based strategy with and without fixed relative
humidity we can see that optimizing for relative humidity yields significant reductions in energy
levels and significant improvements in flexibility. Relaxing the maximum PPD from 5% to 25% results
in an energy flexibility of 400 kWh for the fixed relative humidity strategy. For the free relative
humidity strategy the flexibility is 600 kWh. This is an improvement of 50%.

We emphasize that the results presented here are to understand general trends of behavior. It
would be interesting to perform an actual deployment to evaluate the trade offs considered here
using measurement and verification techniques. Such deployment should consider the relaxation
of relative humidity set-points simultaneously with those of temperature humidity to verify energy
savings in the air-handling unit. Comfort should be verified using occupant polls to verify how close
are PMV predictions to actual perceptions of comfort.
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5 Computational Issues

In this section we demonstrate that one can approximate the comfort region described by the non-
linear thermal comfort model by using linear constraints. This ability is important for reducing the
complexity of the control formulation. We also compare the energy and comfort performance of our
approximation with that of the overrelaxation strategy.

5.1 Energy and Comfort Performance

Consider the comfort region of Figure 3. The four corners of the comfort region can be obtained by fix-
ing the relative humidity to minimum and maximum values allowable (in this case we use RH1=0%
and RH2=100% but this can be set to more conservative values based on operational considerations).
As an example, consider the PMV region [-0.5,0.5] highlighted in Figure 3. For the relative humidity
values RH1 and RH2 first consider a PMV value of -0.5 (left side). The temperatures are given by
T left1 = 21 and T left2 = 23oC. For the right side, we find the temperatures giving a PMV value of
+0.5 at the given relative humidities. The values are T right1 = 24 and T right2 = 27oC. The comfort re-
gion is then approximated using the polyhedral region described by the intersection of the following
inequality constraints,

RH(τ) ≥ RH1, t ∈ [0, N ] (5.34a)

RH(τ) ≤ RH2, t ∈ [0, N ] (5.34b)

RH(τ) ≥ RH2 +
RH2 −RH1

T left1 − T left2

(
T (τ)− T left1

)
, t ∈ [0, N ] (5.34c)

RH(τ) ≤ RH2 +
RH2 −RH1

T right1 − T right2

(
T (τ)− T right1

)
, t ∈ [0, N ]. (5.34d)

For the PMV region [-0.5,+0.5], the overrelaxation strategy imposes the relative humidity boundsRH1 ≤
RH(τ) ≤ RH2 and the temperature bounds T left1 ≤ T (τ) ≤ T right2 .

We compare the energy performance of this polyhedral approximation strategy against the perfor-
mance of the temperature and relative humidity bounds formulation (3.33) (overrelaxation strategy)
and against the performance of the PMV constrained formulation (3.26) for different PMV regions.
We compute the resulting maximum PPD value for all the formulations to determine the amount
of discomfort induced by the approximations. The results are presented in Table 1. For the [-1,+1]
region, the overrelaxation strategy underestimates the energy demand by 365 kWh. This represents
30% less energy compared with the PMV constrained strategy. The maximum PPD, however, reaches
60% while the PMV constrained strategy reaches a maximum of 26% (consistent with a PMV in [-
1,+1]). In other words, 34% more people become dissatisfied under the overrelaxation strategy. For
the [-0.5,+0.5] region, 36% more occupants are dissatisfied. For the [-1,+1] region, the polyhedral ap-
proximation strategy underestimates energy demand by 20 kWh. Only 3% more occupants become
dissatisfied relative to the constrained strategy. The performance is dramatically improved and this
trend remains if the comfort region is either relaxed or constrained.

We have not explicitly computed a Pareto for the comfort overrelaxation strategy but the results in
Table 1 present three points along the front. In other words, we used the the temperature and relative
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Table 1: Performance of different comfort bounding strategies.

PMV Region Strategy Φe(·) [kWh] ΦPPD,max
c (·) [%] NLP Iterations

[-0.5,+0.5]
PMV 1,495 10.2 76
Overrelaxation 1,222 46.8 23
Polyhedral 1,493 10.8 15

[-1.0,+1.0]
PMV 1,201 26.1 57
Overrelaxation 836 60.1 50
Polyhedral 1,181 27.9 28

[-2.0,+2.0]
PMV 469 76.1 51
Overrelaxation 161 95.9 11
Polyhedral 429 79.3 32

humidity bounds corresponding to the increasingly relaxed PMV regions. As we have discussed,
the overrelaxation strategy consistently underestimates energy demand compared to the PMV con-
strained strategy. In addition, it can be concluded that this strategy yields more volatility in comfort
conditions as the bounds are relaxed.

5.2 Computational Performance

To solve the optimal control problems we use an implicit Euler discretization strategy and solve
the resulting nonlinear programming (NLP) problems using IPOPT [29]. In Table 1 we present the
number of NLP iterations required for the different formulations. The incorporation of Fanger’s ther-
mal model equations and the PMV constraints introduce significant nonlinearities. The optimization
solver requires 75 iterations in the worst case and 51 in the best case to converge. The overrelaxation
strategy requires 50 iterations in the worst case and 11 in the best case. The polyhedral approximation
strategy requires 32 iterations in the works case and 15 in the best case. The improved performance
obtained with the polyhedral approximation over the PMV constrained strategy can be attributed di-
rectly to the elimination of the nonlinear constraints by linear constraints. The improvement over the
overrelaxation strategy can be attributed to the fact that the polyhedral constraints narrow down the
feasible region, thus reducing the search space of the solver.

6 Conclusions and Future Work

We have presented a multiobjective framework to analyze the effect of comfort relaxation on the
energy flexibility of building controls systems. We analyzed the flexibility of two main paradigms:
economic-based control strategies and tracking control strategies. We considered the use of con-
straints and the use of penalization terms on percentage mean vote and predicted percentage dissat-
isfied metrics. We have found that PPD and PMV penalization terms yield poor control of comfort
conditions and high system volatility as comfort requirements are relaxed. Consequently, the use of
direct PMV and PPD constraints is advised. We have also found that a tracking control architecture

19



offers limited energy flexibility as comfort requirements are relaxed. In addition, we have found that
avoiding the use of detailed thermal comfort models in control formulations overestimates flexibility
and leads to poor comfort conditions. We have proposed a strategy that approximates the comfort
region described by Fanger’s thermal comfort model using linear constraints. This significantly re-
duces the computational complexity of economics-based control formulations. The results presented
here can have important consequences in actual applications. In particular, they point to the need of
considering co-optimization of temperature and relative humidity set-points, which is rarely considered in
practice. In addition, the results suggest that rigorous comfort models can be approximated reason-
ably using linear polyhedral regions and this can facilitate the implementation of optimization-based
control techniques.

A Model Nomenclature

A.1 Variables

m(·) zone total air mass, grair
Ci(·) zone concentration of component i, gri/m3

Cini (·) concentration of component i in inlet air, gri/m3

Cmi (·) concentration of component i in mixer, gri/m3

CsatH2O
(·) zone saturation density, gri/m3

mrm
i (·) mass removal rate of component i in AHU, gri/hr

P (·) zone pressure, atm
ppmVCO2(·) zone CO2 concentration, ppmV
PMV (·) percentage mean vote, −
PPD(·) predicted percentage dissatisfied, %

qin(·) volumetric inlet flow rate, m3/hr

qout(·) volumetric outlet flow rate, m3/hr

qm(·) volumetric flow rate in mixed, m3/hr

qamb(·) volumetric ambient air flow rate, m3/hr

qex(·) volumetric exhaust air flow rate, m3/hr

Qlat(·) latent heat removed in AHU, kJ/hr
Qsens(·) sensible heat removed in AHU, kJ/hr
Qhvac(·) total HVAC energy, kJ/hr
PH2O(·) water partial pressure, Pa
RH(·) zone relative humidity, %

T (·) zone temperature, K
T in(·) temperature of inlet air, K
Tm(·) temperature in mixer, K
T cl(·) clothing surface temperature, K
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A.2 Parameters

Cambi (·) concentration of component i in ambient air, gr/m3

T amb(·) temperature of ambient air, K
noc number of occupants under occupied periods, 500
Gzi generation rate of component i per occupant, (CO2 = 2.4, H2O = 50) gr/hr

Qoc building heat gain per occupant, 432 kJ/hr

Uw wall heat-transfer coefficient, 18 kJ/hr ·m2 ·K
V z total building volume, 1000 m3

Aw total wall heat-transfer area, 600 m2

cp air heat capacity at standard conditions, 1.0× 10−3 kJ/gr ·K
hlat latent heat of condensation, 2.46 kJ/gr

ρ air density at standard conditions, 1200 g/m3

Icl insulation factor, 0.155

fcl clothing area factor, 1.15

M air molecular weight, 29 gr/grmol

MCO2 CO2 molecular weight, 44 gr/grmol

Mm metabolic heat gain, 58.5 W/m2

Mw body external work , 0 W/m2

R universal gas constant, 0.082× 10−3atm ·m3/grmolK
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